inno lab and MSc defense Jakob Wachter

this Friday, 22nd of April, at 9am we will have one inno lab and one M.Sc. defense, both by Jakob Wachter.

inno lab: “Assessment of climate-induced drought impact on crop types in bavaria” (Tobias Ullmann)

M.Sc. defense: “Potential of webcam Imagery as reference data for Earth Observation Snow Cover products in mountainous areas” supervisors: PD Dr. Tobias Ullmann, Dr. Mattia Rossi (EURAC Research), from the abstract:

“Snow cover in mountainous areas is an important variable for a wide range of ecological and societal factors. Extensive monitoring of Fractional Snow Cover (FSC) and snow related processes has been performed with active and passive satellite earth observation data sources. However, there are limitations to using satellite data, such as their temporal and spatial resolution or cloud coverage. At the same time reliable in-situ information is a key factor to validate snow cover products. To enhance the temporal and
spatial information on ground, openly accessible webcam data show great potential by continuously providing information in many locations. Additional challenges emerge from the use of this data source such as the different view angle compared to satellites, the location of the station or weather influences near the ground. This thesis presents a novel approach to automatically and effectively derive snow cover from webcam images. We use an RGB image timeseries from two different webcams in the Italian Autonomous Province of South Tyrol covering the years of 2019 and 2020 respectively. First the webcam images are filtered to exclude unfavorable weather conditions. On the filtered timeseries three snow extraction models are compared: (1) state-of-the-art simple thresholding method, (2) K-means unsupervised clustering into bright and shadow areas followed by thresholding for each cluster to account for brightness differences and (3), a hybrid approach choosing the state-of-the-art method (1) in case of homogenous illumination (little shadows) and choosing the clustering method (2) in case of heterogenous illumination (many shadows). This is implemented in order to deal with classification errors due to pronounced illumination differences between shadowed and non-shadowed areas within an image. The detected snow cover information can finally be compared to satellite-derived snow cover products. Regions of Interest (ROIs) have been delineated on the webcam image and manually matched to the corresponding Sentinel-2 pixels to gain a more detailed insight. The validation of the workflow is done through visual inspection and classification into the presented classes of 9-14 example images per webcam. FSC can be automatically detected over the course of one year for each image timestep (Figure 3). The accuracies from the confusion matrix of the model results compared to visual inspection are 0.76 and 0.81 in average for the model (1), 0.86 and 0.74 averagely for the model (2) and 0.98 and 0.81 in average for the model (3). Measurements from Sentinel-2 based snow cover products and the webcam measurements show an R² between 0.0025 and 0.51 at the model (1), between 0.12 and 0.56 for the model (2) and between 0.17 and 0.72 for the model (3). Root Mean Square Error (RMSE) values range between 0.46 and 0.17 for the model (1), between 0.37 and 0.2 at the model (2), and for the model (3) between 0.33 and 0.19. The novel approach allows a more-in-depth analysis of relevant phases in mountain snow dynamics such as the melting in spring or new snow events. The approaches (2) and (3) have shown, with slight differences depending on the webcam, better performances when compared to the current state-of-the-art method, with an increased R² value for most examples.”

read more news:

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumni Henrik Fisser presenting polar research

EAGLE alumni Henrik Fisser presenting polar research

Our EAGLE alumni Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...

Orfeo Toolbox covered in our courses

Orfeo Toolbox covered in our courses

As part of our international EAGLE MSc courses, we include comprehensive training on the powerful Orfeo Toolbox (OTB) software. OTB is an open-source library for processing remote sensing imagery, offering advanced algorithms for tasks such as image segmentation,...

Internship network fair

Internship network fair

Today, we provided our international Eagle MSc students with access to the professional network of our EORC to assist them in finding suitable internships or MSc thesis topics. Several individuals offered their networks, including Hannes Taubenboeck for georisk and...

GRASS software for Earth Observation

GRASS software for Earth Observation

In our international EAGLE MSc program, we go beyond the limitations of a single programming language or software environment. Our goal is to empower students to leverage a wide range of scientific tools effectively. They gain insight into the strengths and...