MSc defense Malin Fischer

Malin Fischer will present her MSc thesis “Remote sensing and machine learning for irrigation mapping in complex landscapes: a case study in Mozambique” on Wednesday, 10th of November at 9 am.

From her abstract: “Analyzing the spatio-temporal distribution of irrigated agriculture is essential for informed decision-making to sustainably manage limited freshwater resources. The increasing availability of satellite data, in combination with Machine Learning techniques, provides new opportunities to map this multi-faceted, dynamic land use class. This study investigates respective methodological challenges, and how a workflow design can be optimized to mitigate them. Therefore, a modular, customizable supervised classification method was developed using a Random Forest classifier, instead of following a rule-based, hardly generalizable approach, as most previous studies did. It allows for modifications of input datasets and feature extraction methods, which were identified as relevant design choices. Several experimental runs were conducted in a complex Mozambican landscape with large-scale as well as smallholder farming and irrigation. Temporally aggregated features of dense dry season time-series were generated. The combined use of radar and optical data proved beneficial, unlike the addition of ancillary topographic and aggregated precipitation data. Single-source optical classification outperformed purely radar-based models. The latter benefits from an object-based feature extraction, contrary to all other runs. Here, a segmentation without object vectorization was a limiting factor. However, sample selection had the strongest impact on classification accuracy, emphasizing the need for larger, more representative reference datasets at higher thematic detail. This would be particularly useful for distinguishing rainfed fields and light vegetation, which proved to be more challenging than identifying irrigation. A partial mitigation of the less-than-ideal reference data was achieved using class-representative sampling and cross-validation aggregations. Combined radar-optical models were transferred to another region with differing landscape characteristics. Identifying previously unrepresented land forms and differing irrigation practices proved difficult. The overall good result still encourages future transferability assessments, and emphasizes the demonstrated potential of Machine Learning-based remote sensing studies to close irrigation data gaps.”

supervisors: Martin Wegmann and Ursula Gessner (DLR) in cooperation with Timon Weitkamp (Wageningen University & Research)

read more news:

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumni Henrik Fisser presenting polar research

EAGLE alumni Henrik Fisser presenting polar research

Our EAGLE alumni Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...

Orfeo Toolbox covered in our courses

Orfeo Toolbox covered in our courses

As part of our international EAGLE MSc courses, we include comprehensive training on the powerful Orfeo Toolbox (OTB) software. OTB is an open-source library for processing remote sensing imagery, offering advanced algorithms for tasks such as image segmentation,...

Internship network fair

Internship network fair

Today, we provided our international Eagle MSc students with access to the professional network of our EORC to assist them in finding suitable internships or MSc thesis topics. Several individuals offered their networks, including Hannes Taubenboeck for georisk and...

GRASS software for Earth Observation

GRASS software for Earth Observation

In our international EAGLE MSc program, we go beyond the limitations of a single programming language or software environment. Our goal is to empower students to leverage a wide range of scientific tools effectively. They gain insight into the strengths and...