M.Sc. defense by Anna Orthofer

Anna Orthofer will present her M.Sc. thesis on Friday 7th of February at 10 am in room 1.009 OKW 86. Her M.Sc. was about “Deriving Leaf Area Index and mowing dates for grasslands based on the radiative transfer model SLC and Sentinel 2 data.” More details from the abstract: Grasslands account for more than one third of the world’s terrestrial surface and are therefore one of the most extensive ecosystems. With the food production heavily relying on grasslands as a source for high quality animal fodder for the meat and dairy industry, the pressure on these ecosystems is rising, especially in times of population growth and climate change. In order to meet the food demand while simultaneously ensuring the preservation of grasslands, the need for monitoring and management tools is growing. Leaves make up the majority of a plant’s biomass and play a vital role in the plants metabolism. Thus, the monitoring of leave area is a meaningful approach to observe not only the distribution of vegetation but also their health and biomass. Despite the common use of vegetation indices for the derivation of leaf area, radiative transfer models provide advantages due to their consideration of physical laws regarding radiation transfer within the canopy. This study aims to find a meaningful parameterisation for the soil leaf canopy radiative transfer model (SLC) for the retrieval of biophysical parameters such as the leaf area for the highly heterogeneous canopy of grasslands. In addition, mowing dates are detected on the basis of the SLC derived parameters to monitor management practices. A successive approach to find the best fitting parameterisation for the SLC  was carried out, resulting in model outputs with an overall average RMSE of 1.43. Validating the retrieved leaf area with in-situ data showed a high correlation of r² = 0.97, therefore demonstrating that the approach is meaningful. Proceeding this validation, vegetation indices were calculated and correlated to the field data as well. With  r² = 0.73 (NDVI) and r² = 0.72 (ENDVI) the results succumb to the simulated leaf area. The algorithm trained to detect mowing events on the basis of leaf area and vegetation indices time series also provided meaningful results when compared to field data. The derivation of leaf area and mowing events for large areas as well as long periods of time while being labour and cost effective based on Sentinel-2A and B data delivered satisfying results, therefore providing a meaningful tool in the monitoring and management of grasslands.

read more news:

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumni Henrik Fisser presenting polar research

EAGLE alumni Henrik Fisser presenting polar research

Our EAGLE alumni Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...

Orfeo Toolbox covered in our courses

Orfeo Toolbox covered in our courses

As part of our international EAGLE MSc courses, we include comprehensive training on the powerful Orfeo Toolbox (OTB) software. OTB is an open-source library for processing remote sensing imagery, offering advanced algorithms for tasks such as image segmentation,...

Internship network fair

Internship network fair

Today, we provided our international Eagle MSc students with access to the professional network of our EORC to assist them in finding suitable internships or MSc thesis topics. Several individuals offered their networks, including Hannes Taubenboeck for georisk and...

GRASS software for Earth Observation

GRASS software for Earth Observation

In our international EAGLE MSc program, we go beyond the limitations of a single programming language or software environment. Our goal is to empower students to leverage a wide range of scientific tools effectively. They gain insight into the strengths and...