MSc defense by Aiga Taghavi

Aida Taghavi will present her M.Sc. thesis “Potentials of Cosmic-Ray Neutron Probes for Assessing and Mapping SAR-based Soil Moisture in a Mediterranean agro-forestry ecosystem” on Dec. 15th at 1pm. From her abstract: “Accurate near-surface soil moisture (~ 5cm, SM5cm) estimation at high temporal and spatial resolutions is one of the most critical challenges in agricultural management and hydrological studies. In recent years, the availability of consistent time series of Synthetic Aperture Radar (SAR) measurements retrieved from Sentinel-1 (S1) provides the opportunity to obtain SM at regular time steps in a wide variety of land surface conditions. The present study aims to estimate and map SM5cm in a small-scale agroforestry experimental site (~ 30 ha) in Southern Italy from November 2018 until March 2019 at high spatial-temporal resolution (17 m × 17 m, 6 days temporal interval). To achieve this study’s aim, the random forest (RF) regression analysis is used by incorporating different input data. The input data includes S1 SAR-based, continuous soil moisture (SM) data at various depths from a cosmic-ray neutron probe (CRNP), distributed in-situ SM data at a depth of 15 cm (SM15cm) and 30 cm (SM30cm) from a wireless sensor network (SoilNet), topographic attributes derived from a Digital Elevation Model (DEM), and SM5cm simulated in Hydrus-1D. Two approaches with different input data combinations are tested. In the first approach, the simplified neutron transport model COsmic-ray Soil Moisture Interaction Code (COSMIC) (SHUTTLEWORTH ET AL., 2013) is implemented in Hydrus-1D (BRUNETTI ET AL., 2019) to provide SM5cm simulations comparable to S1 sensing depth. The RF relies on S1 SAR data, DEM-based attributes, and a single time series of SM5cm simulated in Hydrus-1D, calibrated through inverse modeling at field-scale over the CRNP measurement footprint. The field-scale SM5cm is downscaled to obtain sparse point-scale supporting SM5cm over the same twenty positions using the physical-empirical Equilibrium Moisture from Topography (EMT) model. The second approach is based on S1 SAR parameters, DEM-based features, and twenty time-series SM5cm derived from the inverse modeling of SoilNet data with Hydrus-1D. Validation of the derived SM5cm estimations is accomplished using in-situ SM5cm data from survey campaigns conducted during the S1 satellite overpasses over the experimental area. For decreasing computational effort, the most important S1 SAR and DEM variables are identified through dimension reduction analysis, i.e., variable importance. The CRNP-based approach performed similarly to the one based on SoilNet data. This study highlights the enormous potential for modeling reliable SM5cm maps by integrating S1 SAR-based measurements, topographic information, and CRNP data that has the advantage of being non-invasive and easy to maintain.” supervised by Dr. Sarah Schoenbrodt-Stitt

read more news:

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumni Henrik Fisser presenting polar research

EAGLE alumni Henrik Fisser presenting polar research

Our EAGLE alumni Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...

Orfeo Toolbox covered in our courses

Orfeo Toolbox covered in our courses

As part of our international EAGLE MSc courses, we include comprehensive training on the powerful Orfeo Toolbox (OTB) software. OTB is an open-source library for processing remote sensing imagery, offering advanced algorithms for tasks such as image segmentation,...

Internship network fair

Internship network fair

Today, we provided our international Eagle MSc students with access to the professional network of our EORC to assist them in finding suitable internships or MSc thesis topics. Several individuals offered their networks, including Hannes Taubenboeck for georisk and...

GRASS software for Earth Observation

GRASS software for Earth Observation

In our international EAGLE MSc program, we go beyond the limitations of a single programming language or software environment. Our goal is to empower students to leverage a wide range of scientific tools effectively. They gain insight into the strengths and...