LiDAR remote sensing

Lecturer

Hooman Latifi

ECTS

5 ECTS

 

Aim

In this module you will gain a detailed understanding of the advantages and challenges of Earth observation using Light Detection and Ranging (LiDAR) systems. Compared to other types of remote sensing data, the data from active Light Detection and Ranging (LiDAR) systems is of particular importance for local studies, where the 3D component (height) of objects is of relevance. Commonly LiDAR data is applied it in the field of digital terrain modelling, in forestry – e.g. for canopy height assessment, or urban structure applications. LiDAR embraces a range of active remote sensing systems mounted on different platforms, which provide valuable information for characterization of horizontal and vertical structure of the earth surface by measuring the travel time of laser pulses in visible and near-infrared spectral domains. The quality of scanning depends on the nature of the LIDAR system (discrete-return or full waveform) as well as on a set of other terrain- and data-driven factors. This course provides you with an overview on the theory and applications of LiDAR data, with a particular focus on airborne laser scanning. Following the initial theoretical sections on the principles and basic characteristics of LiDAR data, diverse practical steps and exercises will be implemented to provide real-world examples to illustrate how the LiDAR point clouds can be applied to extract information on terrain, surface and vegetation. These information will be further employed to model vegetation structural attributes on multiple spatial scales ranging from single trees to landscape levels.

Content

Block 1: Introduction to LiDAR (how does laser scanning work?)

  • Reminder on general remote sensing issues: difference between active and passive sensing
  •  History of LiDAR measurements
  •  Basics of LiDAR data measurements (platforms, sensors)
  • Airborne vs. spaceborne LiDAR: history, applications and data access
  • Measurement of travel time of laser light (pulsed time of flight)
  • On the concept of “structure”: why a third dimension is crucial?

Block 2: Principles of LiDAR measurements

  • Platform navigation, orientation and positioning
  • Difference between types of data acquisitions: discrete return and echo waveform
  • The recorded parameters: elevation, height, signal intensity and co.
  • The concept of „single-pulse“ vs. „multiple-pulse“
  • How are the incoming returns recorded? first come- first served!
  • Terrestrial LiDAR measurement: one position, rotating scanner
  • Data formats and big data-management: each byte matters!

Block 3: Elevation models:

  • General thoughts: why are the elevation models essential?
  • Digital terrain models
  • Digital surface models
  • Normalized DSM (Canopy height models)
  • Application fields: Forest, landscape and habitat representations
  • Magnified focus on Forest (basic and derived parameters): Diameter at breast height,  height, tree type proportions, tree type mapping, crown closure, stem count, growing stock und aboveground biomass
  • Single tree measurements
  • Urban: City models, roof top and building footprints

Block 4: Exercises in Open-Source domain of LiDAR data processing (Fusion/LDV, LASTools, R)

  • Exercises on point cloud processing
    • Import, export, visualizations and rendering
    • Sample measurements, single tree measurements and associated tasks
    • Elevation models
    • Data trimming, cropping, smoothing and generalizing
    • Catalog and descriptive communication
  • Extraction of metrics for modeling purposes
    • Thoughts on metrics
    • Intensity: yes or no?
    • Multi-scale metric extraction
    • Multi-source metric extraction
  • Class works and workshops (CIP-Pool/Homework)
  • Literature review, discussion groups and public presentations

 

Coding

Coding examples and individual work will be covered

Software

Various software programs will be used, but mainly OpenSource software such as R.

Techniques

Different techniques will be introduced and practically applied.

w

Content

The content of scientific with regard to the audience will be discussed.

General Course News and Updates

MSc defense by Larissa Gorzawski

MSc defense by Larissa Gorzawski

On Wednesday 5th of October at 2pm Larissa will present her M.Sc. thesis "Deep transfer learning on street-level imagery for classification of seismic building types in Lima, Peru". From the abstract: "Comprehensive exposure models for seismic risk assessment require...

read more
M.Sc. defense by Jakob Rieser

M.Sc. defense by Jakob Rieser

On Monday, 26th of September at 10am, Jakob will present his M.Sc. thesis „A Synergistic Use of Optical and SAR Remote Sensing Data for the Long-term Evolution of Biocrusts and their Activity Across Diverse Dryland Ecosystems”. from the abstract: "Biological soil...

read more
MSc defense by Christopher Chan

MSc defense by Christopher Chan

Chris will present his M.Sc. thesis "Investigating the capability of UAV imagery in AI-assisted mapping of Refugee Camps in East Africa" on Friday 16th of September at 2pm. From his abstract: " Refugee camps and informal settlements provide accommodation to some of...

read more
MSc defense by Annika Ludwig

MSc defense by Annika Ludwig

Annika will present her M.Sc. thesis "Analysis of alpine grassland management dynamics based on webcam and optical remote sensing time series" on Friday 9th of September at 9am. From the abstract: "The aim of this study is to detect relationships between environmental...

read more
EAGLE summer dialogue 2022

EAGLE summer dialogue 2022

After two years we finally had our EAGLE summer dialogue again with many Earth Observation alumni, now working in various research organizations and companies. Great to talk to all our past and present students and also seeing all the students getting to know each...

read more
MSc defense by Antonio Castaneda

MSc defense by Antonio Castaneda

On Friday, 1st of July at 9am Antonio will present his M.Sc. thesis "Potential and limits of using UAS in forest monitoring". From the abstract: "The exponential development, usage, and application of uncrewed area systems (UAS) have given remote scientists a clear...

read more