Object based sequential masking classification using SAR and optical data

SAR_and_optical_dataRemote sensing based crop mapping is still challenging when just relying on optical information as the only data source. Due to the unavailability of adequate optical satellite images the integration of SAR is promising and can be explored within an innovation laboratory. The combination of SAR (TERRA-SAR-X and Sentinel-1) and optical images (RapidEye and Sentinel-2) for classification will improve the reliability and accuracy of crop maps. In addition, a sequential masking classification technique will be used to classify individual crop classes. These results will be compared with results of a one-step classification, in which all crop classes were classified at the same time. It has to be determined if the sequential masking approach will improve overall classification accuracies, compared to the one-step classification. As a study site the TERENO test site DEMMIN in Mecklenburg-Western Pomerania is suggested.

read more news:

Empowering Future Earth Observation Experts! 🌍

Empowering Future Earth Observation Experts! 🌍

At EAGLE, our Earth Observation students are diving deep into the fascinating world of geospatial analysis! Through hands-on training, they master cutting-edge algorithms and techniques to address pressing environmental challenges such as Georisk Assessment:...

Successful Master Thesis Defense by Konstantin Müller

Successful Master Thesis Defense by Konstantin Müller

On January 14th, Konstantin Müller successfully defended his master’s thesis titled "Animal Path Segmentation and Analysis via Generalized Deep Neural Network Regression". Supervised by Jakob Schwalb-Willmann and Dr. Mirjana Bevanda, the presentation was delivered to...