Deep Neural Network Regression for Normalized Digital Surface Model Generation with Sentinel-2 Imagery

Our EAGLE student Konstantin Müller published together with our chairholder of the Deparment of Global Urbanization and Remote Sensing, Hannes Taubenboeck an article about DL for surface model generation. The article explores methods to extract high-resolution normalized digital surface models (nDSMs) from low-resolution Sentinel-2 data, enabling the creation of large-scale models. Leveraging the open access and global coverage of Sentinel 2, the study employs deep learning models, based on the U-Net architecture, with tailored multiscale encoders and conformed self-attention to achieve a mean height error of approximately 2m.

from the abstract: In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from lowresolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7%.

Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10189905

read more news:

Internship Report on Tuesday, May 21st at 12:00

Internship Report on Tuesday, May 21st at 12:00

NEW DATE: On Tuesday, May 21st, Elly Schmid will present her internship at 12:00 in seminar room 3, John-Skilton-Str. 4a. : From the abstract: The internship was carried out as part of the HEATS-(Urban heat) Project of the Georisks team at the Earth Observation...

Spatial Earth Observation R packages by our EAGLEs

Spatial Earth Observation R packages by our EAGLEs

Our EAGLE students that took and passed our Introduction to spatial programming course had to submit an R package that applies spatial methods for a variety of Earth Observation data. We are very proud to show the huge diversity of very interesting and useful R...

publication by our EAGLE Ben Lee

publication by our EAGLE Ben Lee

Our EAGLE Ben conducted an internship during his EAGLE studies which led to a new publication on "Predicting resilience of migratory birds to environmental change" jointly with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar...

Internship Report on Tuesday, April 30 at 14:00

Internship Report on Tuesday, April 30 at 14:00

On Tuesday, April 30 Konstantin Müller will present his internship " GDELT News Analysis of the Noto Earthquake via ERNIE" at 14:00 in 01.B.03, John-Skilton-Str. 4a. : From the abstract: The analysis of socioeconomic data has gained increasing importance. The exchange...

EAGLE MSc. graduation

EAGLE MSc. graduation

We are very happy to celebrate again the graduation of some of our EAGLE M.Sc. students. The candidates already handed in their M.Sc. thesis a while ago but just recently we had our EAGLE graduation party and enjoyed to celebrate this important milestone with all...