MSc defense by Antonio Castaneda

On Friday, 1st of July at 9am Antonio will present his M.Sc. thesis “Potential and limits of using UAS in forest monitoring”.

From the abstract: “The exponential development, usage, and application of uncrewed area systems (UAS) have given remote scientists a clear opportunity to improve and complement fieldwork measurements and start interconnecting different spatial resolution products with field work expanding the analysis possibilities in broad ways. Even if UAS represents a hyper-local data set under the remote sensing view, it has also been a game-changer for above-ground biomass (AGB) estimations. Traditionally, direct measurements of AGB have been made through destructive methodologies that imply tree trunk, leaves, and branches harvesting making them time-consuming, labor-intensive, and impossible to cover large areas procedures. Despite that, nondestructive methods allow AGB estimations by using allometric equations. Those equations establish relationships between tree parameters such as tree height (H), crown diameter (CD), and diameter at breast height (DBH) and the total AGB of the tree. Although the AGB can be calculated by measuring these variables, obtaining them in the field for each tree is time-consuming and not systematic.  

In this work, four Lidar point clouds obtained with UAS flights are obtained over a test plot in Berchtesgaden National Park, south Germany-Bavaria to compare the final AGB estimation from different flight heights (80 m and 100 m), flight directions East-West and North-South. The AGB is calculated using standard algorithms from the BIOMASS R package to standardize the outputs. The different settings, two different heights at two different flight directions (North-South and East-West), have a low impact on the single tree segmentation and point cloud density. Therefore, planning UAS missions at higher altitudes can be prioritized to encompass more areas. Also, certain conditions, such as the seasonality, should be met to ensure that enough laser beams impact the tree stems. Finally, the synergy between small field plot measurements and UAS overflights may represent one of the most accurate ways to expand the covered area by fieldwork and make the time series variable easily included in AGB data sets. Systematicity and reproducibility, which the UAS give, place them as valuable datasets to explore. Furthermore, they can be used to upscale analysis and generate highly comparable to ground truth data sets that may serve as control points for remote sensing AGB products. “

supervisors: Martin Wegmann, Mirjana Bevanda

read more news:

EAGLE summer dialogue

EAGLE summer dialogue

Our annual EAGLE summer dialogue was a great success again even though the weather was quite challenging. The EAGLEs organized a fantastic event with fun activities, great images reviving the last months and years and of course a BBQ, drinks and an outstanding...

new publication by our EAGLE student Clara Vydra

new publication by our EAGLE student Clara Vydra

Our EAGLE student Clara just published an article about snow cover variability in Central Asia - great to see our young EAGLE MSc students being on a good track for their scientific career. from the abstract: "Climate change is affecting the snow cover conditions on a...

UAS team – meme

UAS team – meme

The UAS (UAV or drone) team was quite busy the last months to collect data in Europe, Africa or Arctic and the group spend plenty of hours traveling and collecting Lidar, multispectral, thermal or hyperspectral data in various ecosystems. Of course in many cases faced...

scientific graphics course

scientific graphics course

Beside the various remote sensing courses such as radar, cloud computing, terrain analysis, urban analysis etc. we do also offer courses on softskills such as scientific writing, presentations as well scientific graphics and maps. Within our scientific graphics course...

EAGLE students introduce locust spatio-temporal modeling

EAGLE students introduce locust spatio-temporal modeling

Our EAGLE students Leonie, Sonja and Clara presented methods to model the spatial and temporal distribution of locust in France using statistical modelling approaches within R and the flexSDM package. The elaborated for two hours how the complex data preparation,...