MSc defense by Marius Witt

Marius Witt will present his M.Sc. thesis “Investigating discharge dynamics at catchment level using
remote sensing timeseries” on Friday 14th of January 2022 at 9am. From the abstract:

The anthropogenic induced climate change is one of the foremost challenges of the 21st century, with wide ranging consequences on environmental systems. The hydrological cycle, especially in cold regions, is going to be influenced with expected changes in timing and magnitude of snowmelt and floods. Thus, it is important to assess the impact of climate change on the hydrological response of snow dominated catchments, which could be achieved by reliable hydrological models, ideally with little data requirements. The aim of this study is to assess the applicability of simple hydrological models on snow dominated catchments when using climate reanalysis and remote sensing snow cover data. Two conceptual models (SRM and GR4J) were tested for 40 catchments with seven types of natural runoff regimes in five European countries between 2000 and 2020. As input data, a novel climate reanalysis product (ERA-5 Land) and DLR’s Global SnowPack snow cover product were used. To test for possible trends in the environmental parameters, the nonparametric Mann-Kenndal trend test was employed. To assess the interdependency of parameters, pairwise Pearson correlations were calculated. Only a small number of significant trends in temperature, precipitation and snow cover were found. The median Pearson correlations for each type of hydrological regime did show no conclusive patterns. SRM did outperform GR4J in snow dominated catchments with a simple regime. However, the results achieved with a time-invariant parameterization are worse than results for time dependent parameterizations described in literature. This leads to the conclusion, that the conceptual models with time-invariant parameterization assessed in this study are limited in their applicability for climate impact studies, with further need for improvements. Possible improvements discussed are the use of time dependent parameterizations, longer timeseries of environmental data or the use of higher resolution remote sensing snow cover products.

supervisors: Dr. Tobias Ullmann and Dr. Sebastian Rößler (DLR)

read more news:

Successful Master Thesis Defense by Konstantin Müller

Successful Master Thesis Defense by Konstantin Müller

On January 14th, Konstantin Müller successfully defended his master’s thesis titled "Animal Path Segmentation and Analysis via Generalized Deep Neural Network Regression". Supervised by Jakob Schwalb-Willmann and Dr. Mirjana Bevanda, the presentation was delivered to...

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumnus Henrik Fisser presenting polar research

EAGLE alumnus Henrik Fisser presenting polar research

Our EAGLE alumnus Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...