MSc defense by Marius Witt

Marius Witt will present his M.Sc. thesis “Investigating discharge dynamics at catchment level using
remote sensing timeseries” on Friday 14th of January 2022 at 9am. From the abstract:

The anthropogenic induced climate change is one of the foremost challenges of the 21st century, with wide ranging consequences on environmental systems. The hydrological cycle, especially in cold regions, is going to be influenced with expected changes in timing and magnitude of snowmelt and floods. Thus, it is important to assess the impact of climate change on the hydrological response of snow dominated catchments, which could be achieved by reliable hydrological models, ideally with little data requirements. The aim of this study is to assess the applicability of simple hydrological models on snow dominated catchments when using climate reanalysis and remote sensing snow cover data. Two conceptual models (SRM and GR4J) were tested for 40 catchments with seven types of natural runoff regimes in five European countries between 2000 and 2020. As input data, a novel climate reanalysis product (ERA-5 Land) and DLR’s Global SnowPack snow cover product were used. To test for possible trends in the environmental parameters, the nonparametric Mann-Kenndal trend test was employed. To assess the interdependency of parameters, pairwise Pearson correlations were calculated. Only a small number of significant trends in temperature, precipitation and snow cover were found. The median Pearson correlations for each type of hydrological regime did show no conclusive patterns. SRM did outperform GR4J in snow dominated catchments with a simple regime. However, the results achieved with a time-invariant parameterization are worse than results for time dependent parameterizations described in literature. This leads to the conclusion, that the conceptual models with time-invariant parameterization assessed in this study are limited in their applicability for climate impact studies, with further need for improvements. Possible improvements discussed are the use of time dependent parameterizations, longer timeseries of environmental data or the use of higher resolution remote sensing snow cover products.

supervisors: Dr. Tobias Ullmann and Dr. Sebastian Rößler (DLR)

read more news:

EAGLE Daria did her internship in Bergen

EAGLE Daria did her internship in Bergen

Our EAGLE student Daria recently wrapped up an internship at the University of Bergen in the Remote Sensing research group. With the support of her supervisor, Dr. Benjamin Abreu Robson, she got to work on the Jostedalsbreen glacier using drone and satellite data. Her...

EAGLE alumni Henrik Fisser presenting polar research

EAGLE alumni Henrik Fisser presenting polar research

Our EAGLE alumni Henrik Fisser recently visited us after a research stay in the United States. He is now pursuing his PhD at UiT The Arctic University of Norway, specifically in the Earth Observation Department. UiT is renowned for its cutting-edge research in Earth...

Orfeo Toolbox covered in our courses

Orfeo Toolbox covered in our courses

As part of our international EAGLE MSc courses, we include comprehensive training on the powerful Orfeo Toolbox (OTB) software. OTB is an open-source library for processing remote sensing imagery, offering advanced algorithms for tasks such as image segmentation,...

Internship network fair

Internship network fair

Today, we provided our international Eagle MSc students with access to the professional network of our EORC to assist them in finding suitable internships or MSc thesis topics. Several individuals offered their networks, including Hannes Taubenboeck for georisk and...

GRASS software for Earth Observation

GRASS software for Earth Observation

In our international EAGLE MSc program, we go beyond the limitations of a single programming language or software environment. Our goal is to empower students to leverage a wide range of scientific tools effectively. They gain insight into the strengths and...